92 research outputs found

    Measuring the undetectable: Proper motions and parallaxes of very faint sources

    Full text link
    The near future of astrophysics involves many large solid-angle, multi-epoch, multi-band imaging surveys. These surveys will, at their faint limits, have data on large numbers of sources that are too faint to be detected at any individual epoch. Here we show that it is possible to measure in multi-epoch data not only the fluxes and positions, but also the parallaxes and proper motions of sources that are too faint to be detected at any individual epoch. The method involves fitting a model of a moving point source simultaneously to all imaging, taking account of the noise and point-spread function in each image. By this method it is possible to measure the proper motion of a point source with an uncertainty close to the minimum possible uncertainty given the information in the data, which is limited by the point-spread function, the distribution of observation times (epochs), and the total signal-to-noise in the combined data. We demonstrate our technique on multi-epoch Sloan Digital Sky Survey imaging of the SDSS Southern Stripe. We show that we can distinguish very red brown dwarfs by their proper motions from very high-redshift quasars more than 1.6\mag fainter than with traditional technique on these SDSS data, and with better better fidelity than by multi-band imaging alone. We re-discover all 10 known brown dwarfs in our sample and present 9 new candidate brown dwarfs, identified on the basis of high proper motion.Comment: AJ, in pres

    Microsurgery in pediatric upper limb reconstructions: An overview

    Get PDF
    Pediatric microsurgery; Brachial plexus palsy; Upper limbMicrocirugía pediátrica; Parálisis del plexo braquial; Extremidad superiorMicrocirurgia pediàtrica; Paràlisi del plexe braquial; Extremitat superiorThe use of microsurgery has spread during the last decades, making resolvable many complex defects considered hitherto inapproachable. Although the small vessel diameter in children was initially considered a technical limitation, the increase in microsurgical expertise over the past three decades allowed us to manage many pediatric conditions by means of free tissue transfers. Pediatric microsurgery has been shown to be feasible, gaining a prominent place in the treatment of children affected by limb malformations, tumors, nerve injuries, and post-traumatic defects. The aim of this current concepts review is to describe the more frequent pediatric upper limb conditions in which the use of microsurgical reconstructions should be considered in the range of treatment options

    A simple test for the existence of two accretion modes in Active Galactic Nuclei

    Full text link
    By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, I consider the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretion rates mdot < 0.01 and black hole masses Mbh < 10^9 Msun constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the black hole mass-luminosity plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. I suggest further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or "steep power-law") state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.Comment: Accepted by ApJ; 14 pages, 4 figures, uses emulateap

    Spectral Decomposition of Broad-Line AGNs and Host Galaxies

    Full text link
    Using an eigenspectrum decomposition technique, we separate the host galaxy from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75. The decomposition technique uses separate sets of galaxy and quasar eigenspectra to efficiently and reliably separate the AGN and host spectroscopic components. The technique accurately reproduces the host galaxy spectrum, its contributing fraction, and its classification. We show how the accuracy of the decomposition depends upon S/N, host galaxy fraction, and the galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN host galaxies spans a wide range of spectral types, but the distribution differs significantly from inactive galaxies. In particular, post-starburst activity appears to be much more common among AGN host galaxies. The luminosities of the hosts are much higher than expected for normal early-type galaxies, and their colors become increasingly bluer than early-type galaxies with increasing host luminosity. Most of the AGNs with detected hosts are emitting at between 1% and 10% of their estimated Eddington luminosities, but the sensitivity of the technique usually does not extend to the Eddington limit. There are mild correlations among the AGN and host galaxy eigencoefficients, possibly indicating a link between recent star formation and the onset of AGN activity. The catalog of spectral reconstruction parameters is available as an electronic table.Comment: 18 pages; accepted for publication in A

    Temporal fluctuations in excimer-like interactions between pi-conjugated chromophores

    Full text link
    Inter- or intramolecular coupling processes between chromophores such as excimer formation or H- and J-aggregation are crucial to describing the photophysics of closely packed films of conjugated polymers. Such coupling is highly distance dependent, and should be sensitive to both fluctuations in the spacing between chromophores as well as the actual position on the chromophore where the exciton localizes. Single-molecule spectroscopy reveals these intrinsic fluctuations in well-defined bi-chromophoric model systems of cofacial oligomers. Signatures of interchromophoric interactions in the excited state - spectral red-shifting and broadening, and a slowing of photoluminescence decay - correlate with each other but scatter strongly between single molecules, implying an extraordinary distribution in coupling strengths. Furthermore, these excimer-like spectral fingerprints vary with time, revealing intrinsic dynamics in the coupling strength within one single dimer molecule, which constitutes the starting point for describing a molecular solid. Such spectral sensitivity to sub-Angstrom molecular dynamics could prove complementary to conventional FRET-based molecular rulers

    A Survey of z ~ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. II. Discovery of Six Quasars at z AB>21

    Get PDF
    We present the discovery of six new quasars at z ~ 6 selected from the Sloan Digital Sky Survey (SDSS) southern survey, a deep imaging survey obtained by repeatedly scanning a stripe along the celestial equator. The six quasars are about 2 mag fainter than the luminous z ~ 6 quasars found in the SDSS main survey and 1 mag fainter than the quasars reported in Paper I. Four of them comprise a complete flux-limited sample at 21 < z_(AB) < 21.8 over an effective area of 195 deg^2. The other two quasars are fainter than z_(AB) = 22 and are not part of the complete sample. The quasar luminosity function at z ~ 6 is well described as a single power law Φ(L_(1450))α L^β_(1450) over the luminosity range –28 < M_(1450) < –25. The best-fitting slope β varies from –2.6 to –3.1, depending on the quasar samples used, with a statistical error of 0.3-0.4. About 40% of the quasars discovered in the SDSS southern survey have very narrow Lyα emission lines, which may indicate small black hole masses and high Eddington luminosity ratios, and therefore short black hole growth timescales for these faint quasars at early epochs
    • …
    corecore